Harnessing yeast subcellular compartments for the production of plant terpenoids.
نویسندگان
چکیده
The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.
منابع مشابه
Volatile science? Metabolic engineering of terpenoids in plants.
Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated a...
متن کاملStable heterologous expression of biologically active terpenoids in green plant cells
Plants biosynthesize a great diversity of biologically active small molecules of interest for fragrances, flavors, and pharmaceuticals. Among specialized metabolites, terpenoids represent the greatest molecular diversity. Many terpenoids are very complex, and total chemical synthesis often requires many steps and difficult chemical reactions, resulting in a low final yield or incorrect stereoch...
متن کاملHARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Terpenoid biomaterials
Terpenoids (isoprenoids) encompass more than 40 000 structures and form the largest class of all known plant metabolites. Some terpenoids have well-characterized physiological functions that are common to most plant species. In addition, many of the structurally diverse plant terpenoids may function in taxonomically more discrete, specialized interactions with other organisms. Historically, spe...
متن کاملPlant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation.
Volatile terpenoids released from different plant parts play crucial roles in pollinator attraction, plant defense, and interaction with the surrounding environment. Two distinct pathways localized in different subcellular compartments are responsible for the biosynthesis of these compounds. Recent advances in the characterization of genes and enzymes responsible for substrate and end product b...
متن کاملImproving yeast strains using recyclable integration cassettes, for the production of plant terpenoids
BACKGROUND Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. RESULTS S. cerevisiae wild type yeast cells, selected f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metabolic engineering
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2011